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1. INTRODUCTION AND STATEMENT OF RESULTS

If P(z) is a polynomial of degree », then

Max | P'(z)| <=n Ma)i | P(z)] (1)
lz| =1 z| =
and
Max |P(z)| < R" Max | P(2)]. )
lz|=R>1 7i=

Inequality (1) is an immediate consequence of S. Bernstein’s theorem on
the derivative of a trigonometric polynomial (for reference see [6]).
Inequality (2) is a simple deduction from the maximum modulus principle
(see [5, 346] or [4, Vol I, 137, Problem 2691]).

In both (1), (2) equality holds only for P(z)=me™z", that is, when P(z)
has all its zeros at the origin. It was conjectured by P. Erdos and later
proved by Lax [3] (see also [1]) that if P(z) does not vanish in |z]| <1,
then (1) can be replaced by

Max | P'(2)] < Max | P(2)]. (3)

z|=1

On the other hand, Turdn [7] showed that if P(z) has all its zeros in
[z] <1, then

Max | P'(z)| = Max | P(2)|. 4)

jzl=1

Thus in (3) as well as in (4) equality holds for those polynomials of degree
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n which have all their zeros on |z| = 1. Ankeny and Riviin {27 used (3) to

prove that if P(z) does not vanish in |z| < 1, then

R+ 1
2

Max | P(z2)| <<
lz]|=R>1

) fax | P(2)], (5)

which is much better than (2). Besides, equality in (5) holds for the
polynomial P(z)=az"+ §, where |a| =|5].

In this paper, we shall first obtain a result concerning the minimum
modulus of a polynomial P(z) and its derivative P’(z) analogous to (2} and
(1), when there is a restriction on the zeros of P(z). We prove

THEOREM 1. If P(z) is a polynomial of degree n having all its zeros in
lz| <1, then

Min | P'(z)| > n Min | P(z)] (6)

and

|-|1Yﬁn | P(z)] = R" Mln | P(z)}. {7}

Both the estimates are sharp with equality for P(z) =me™z", m>0.
Next we prove the following interesting generalization of (3).

THEOREM 2. If P(2) is a polynomial of degree n which does not vanish in
the disk |z| <1, then

Max | P'(z)| < {Max | P(z)| — Mln | P(z )|} (8)

lz]=1

The result is best possible and equality in (8) holds for the polynomial
P(zy=waz"+ B, where || = |«].

As an application of Theorem 2, we also obtain the following
generalization of the inequality (5).

THEOREM 3. If P(z) is a polynomial of degree n which does not vanish in
the disk |z| <1, then

R*+1 R —1 .
Max | P(z)| << i ) Max | P(z)| —( > Min | P(z)]. (%)
[z]=R>1 2 zl=1 2 lzi=1
The result is best possible and equality in (9) holds for P(z)=oaz"+ §,
where || = |al.
Finally we present a generalization of the inequality {4).
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THEOREM 4. [If P(z) is a polynomial of degree n which has all its zeros in
|z| <1, then

Max | P'(2)| 25 {Max | P(z)| + Min | P(2)]}. (10)

The result is best possible and equality in (10) holds for P(z)=az"+ 8,
where |B] < |a].

2. PROOFs OF THE THEOREMS

Proof of Theorem 1. 1f P(z) has a zero on |z| =1, then inequalities (6)
and (7) are trivial. So we suppose that P(z) has all its zeros in |z| < 1. If
m=Min, _ | P(z)|, then m>0 and m < | P(z)| for |z| = 1. Therefore, if «
is a complex number such that || < 1, then it follows by Rouche’s theorem
that the polynomial F(z)= P(z)—amz" of degree n has all its zeros in
|z| < 1. By the Gauss—Lucas theorem, the polynomial

F'(z)= P'(z) — namz" 1

has all its zeros in |z| <1 for every complex number « with |a| < 1. This
implies that

nm |z|"" < | P'(2)) for |z|>1.
If this is not true, then there is a point z=z,, |zy| = 1, such that
|nmzg =1 > | P'(zo)].
We can, therefore, take o= P'(zo)/nmzi !, then |a| < 1 and F'(z,)=0. But
this contradicts the fact that F'(z)#0 for |z| = 1. Hence

|P'(z)| zmnm|z|""'  for |z|>1 (11)

In particular, (11) gives

Min | P'(z)| 2 nm=n Min | P(z)].
1z|=1 lzj=1

This proves inequlaity (6). To prove inequality (7), we observe that if
Q(z)=z"P(1/Z), then Q(z) has all its zeros in |z|>1 and m<|P(z)| =
| Q(2)| for | z| = 1. Therefore, the function m/Q(z) is analytic in |z| <1 and
|m/Q(z)] <1 for [z|=1. Hence by the maximum modulus principle it
follows that m< |Q(z)| for [z] < 1. Replacing z by 1/Z and noting that
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z"Q(1/Z) = P(z), we conclude that m |z|"<|P(z)| for {z|>=1. Taking in
particular z=Re”, 0<0<2n, R>1, we get

| P(Re”®)| > mR",

which gives
1 IMin 1 | P(z)| = I1\/‘Iin | P(Rz}| = R" Min | P(z)].
zl=R> zl=1 lz]=1

This proves the inequality (7) and Theorem 1 is completely proved.

Proof of Theorem 2. If m=Min,,,_, | P(z)|, then m<|P(z)| for |z]| = 1.
Since all the zeros of P(z) lie in |z| =1, therefore, for every compiex
number « such that |a] <1, it follows (by Rouche’s theorem for m > 0)
that the polynomial F(z)= P(z)—am does not vanish in |z| < 1. Thus if
244 225 - 2, A€ the zeros of F(z), then |z,|> 1, j=1,2, .., n, and

zF’(z)___ Z”: z
Fz) [Siz—z/
so that
eiHF/(eiB) n eiG I 1 n
F(e®?) j.; e’ —z, j;2 2

-]

for points ¢, 0 <8 < 27, other than the zeros of F(z). This implies
| eiHF/(ei9)| < I nF(eiG) . eiBF/(eiG)l

for every point e”, 0<60<2n, other than the zeros of F{(z). Since this
inequality is trivially true for points e” which are the zeros of F(z), it
follows that

| F'(z)| < |nF(z) — zF'(z)| for |z|=1 (12
If we define Q(z)=z"P(1/%) and G(z)=z"F(1/Z), then we have G(z)=
Q(z)—amz" and it can be easily seen that

|G'(z)| = |nF(z) - zF'(z)| for Jz]=1
Hence from (12) we get
|P'(2)| = |F(2)| <1G'(2)| = | Q'(z) — anmz"""| (13)

for |z| =1 and for every a with |a| < 1. Since all the zeros of O(z) lie in
lz] <1, therefore, by Theorem 1, we have for |[z]{=1

10'(2)] 2 Ilz/llizn1 |1Q(z)| =n ;I,Y]ﬁ:nx | P(z)| = nm.
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Hence we can choose argument of o in (13) such that

|Q'(z)—anmz"~ | =|Q'(2)| —|a|nm  fpr |z|=1

Using this in (13) and letting |a| — 1, we obtain

1PE)I<|Q()|—nmm  for |z|=1 (14)

If P(z) is a polynomial of degree », then [1, Lemma 2]

N

|P'(z)| + |nP(z)—zP'(z)| €n INIIa_ui | P(2) for |z|=1. (15)

Since

|Q'(2)| = [nP(z)—zP'(z)]  for |z|=1,

it follows from (15) that

| P'(2)|+1Q'(z)l <n Mi)i |P(z)]  for |z|=1. (16)

Inequality (14) gives with the help of inequality (16) that

2|P'(2) <|P'(2) +1Q'(2)] —nm
<H(I1VIIE_1§|P(Z)I—|1V|IEHIIP(Z)I) for |z|=1,

which immediately gives (8) and Theorem 2 is proved.

Proof of Theorem 3. Let M =Max, _, | P(z)| and m=Min,, _, | P(z)|.
Since P(z) is a polynomial of degree n which does not vanish in |z| <1,
therefore, by Theorem 2 we have

[P (z)] < (12} (M — m) for |z|=1.

Now P’(z) is a polynomial of degree n — 1; therefore, it follows by (2) that
forall ¥>1and 0<0<2n

| P'(re”)| < (n/2) r"~Y(M —m).
Also for each 0, 0< 60 < 2% and R> 1, we have

P(Re®)— P(e®) = fR e”P'(te”) dt.
1
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This gives

for each 6, 0 <0 <2 and R> 1. Hence
| P(Re™)| < | P(e®)] + H(R" — 1 }(M —m)
<M+ 3R 1) (M —m), (17

for each, 6, 0 <8< 2x and R> 1. From (17) we conclude that

Max |P(z)|< (Rn+ 1> M— (Rn~ 1) m.

jz{=R>1 2 p

Lr

This proves the desired result.

Proof of Theorem4. Let m=Min,, _, |P(z)|, then m<|P(z)| for
[z|=1. Since all the zeros of P(z) lie in |z| <1, therefore, for every
complex number a, such that |«| < 1, it follows {by Rouche’s theorem for
m >0} that the polynomial F(z)= P(z)—ma has all its zeros in |z|< L
Hence if z,, z, .., z, are the zeros of F(z), then |z;/ <1, j=1,2,.,n, and
"1 n
> L1577

i0

t(?Fl(ezG)

19) Z:

Re

for every point e”, 0 <6 < 2n, which is not a zero of F(z). This gives
| F(e")/F(e™)| = Re(e"F (¢?))/F(e™) %,

for every point e”, 0 <6< 2n, which is not a zero of F(z). This further
implies

| F(e")] = (n/2)| F(e")]
for every point e®, 0 <0 <2r. Hence

| P'(2)] = F(2)| 2 (n/2)| F(z)| = (n/2)| P(z) —am]|  for |z]|=1
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and for every a, with |«| < 1. Choosing argument of « suitably and letting
[a] — 1, we get

| P'(2)| = (n/2)(| P(z) +m)  for |z|=1,

which gives

Max | P'(z) %— (Max | P(z)| + Min | P(2)]).
z|l= lzf=1

z|=1

This completes the proof of Theorem 4.

3. SoME REMARKS

Remark 1. Let P(z) be a polynomial of degree » which has all its zeros
in |z] <1. If Q(z)=z"P(1/Z), then the polynomial Q(z) does not vanish in
|z] <1 and | P(z)| = | Q(z)] for |z] =1, so that

Min |Q(z)| = |I>/|Ii=nl | P(2)].

lz|=1
Applying (14) to the polynomial Q(z) and noting that z"Q(1/Z) = P(z), it
follows that

lP'(Z)I—IQ’(Z)I>n[1§/Iﬁ=nlIP(Z)I for |z|=1. (18)

We also note that for [z|=1

1Q'(2)| = |zP'(z) —nP(z)| 2 | P'(z)| = n| P(z)],

and therefore,

[P -0 <n|P(z)] for |z]=1 (19)

From (18) and (19) we obtain
llz\’[h:nl (1P () —1Q'(z)])=n |1\/l11=n1 | P(2)], (20)

for every polynomial P(z) having all its zeros in |z] <1. Moreover, the
minimums of both sides in (20) are attained at the same point |zy|=1.
This follows from the fact that if | P(zo)| =Min, -, | P(z)| and |z,| =1,
then (from (18) and (19)) we get | P'(zo)] — | Q' (2o)] =n | P(z,)].
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Remark 2. In (7) equality holds only for P(z)=me™z". For if
m=Min, _, |P(z)] and P(z) does not have the form me™z", then
O(z)=:z"P(1/Z) is not a constant. From the proof of the inequality (7), it
follows that m<|Q(z)| for |z| <1 and therefore, m|z|" <|P(z)| for
|z| >1. This implies Min . _z. | P(z)|>mR"=R"Min, ,_, | Plz)]. If
P(z)=me™z", then we have clearly equality in (7).

Remark 3. If in Theorem 3, M = Max,.,_, [P{z)] and m =
Min|, _, | P(z)|, then equality in (9) holds only for P(z)=(a(M —m)/2)
2"+ (B(M + m)/2), where |o| =|f]=1. This follows from the fact that if
P(z) does not have the form (o(M —m}/2)z" +{(F(M +m)/2), la|=|f| =1,
then in the proof of Theorem 3, by virtue of (2}, we have the strict
inequality

| P'(re®) < (nf2)r" '(M —m), forallr>1land0<f<2n

Hence we also have the strict inequality in (17) forall R>1 and 0< 9 <2x,
which gives

R*+1 R'—1
s <55
Finally, if P(z)= (oM —m)/2)z"+ (B{(M +m)/2), |a|=]8]=1, then
Max|:|:R>1 [Pz =((R"+ 1)/2)M — ((R" - 1)/2) m.
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