Inequalities for a Polynomial and Its Derivative

Abdul Aziz and Q. M. Dawood
Post Graduate Department of Mathematics, University of Kashmir, Hazratbal Srinagar-190006, Kashmir, India
Communicated by V. Totik

Received January 5, 1986; revised April 15, 1986

1. Introduction and Statement of Results

If $P(z)$ is a polynomial of degree n, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leqslant n \operatorname{Max}_{|z|=1}|P(z)| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Max}_{|z|=R>1}|P(z)| \leqslant R^{n} \operatorname{Max}_{|z|=1}|P(z)| . \tag{2}
\end{equation*}
$$

Inequality (1) is an immediate consequence of \mathbf{S}. Bernstein's theorem on the derivative of a trigonometric polynomial (for reference see [6]). Inequality (2) is a simple deduction from the maximum modulus principle (see [5, 346] or [4, Vol I, 137, Problem 269]).
In both (1), (2) equality holds only for $P(z)=m e^{i \alpha} z^{n}$, that is, when $P(z)$ has all its zeros at the origin. It was conjectured by P. Erdös and later proved by Lax [3] (see also [1]) that if $P(z)$ does not vanish in $|z|<1$, then (1) can be replaced by

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leqslant \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| . \tag{3}
\end{equation*}
$$

On the other hand, Turán [7] showed that if $P(z)$ has all its zeros in $|z| \leqslant 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geqslant \frac{n}{2} \operatorname{Max}_{|z|=1}|P(z)| . \tag{4}
\end{equation*}
$$

Thus in (3) as well as in (4) equality holds for those polynomials of degree
n which have all their zeros on $|z|=1$. Ankeny and Rivlin [2] used (3) to prove that if $P(z)$ does not vanish in $|z|<1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=R>1}|P(z)| \leqslant\left(\frac{R^{n}+1}{2}\right) \operatorname{Max}_{|z|=1}|P(z)|, \tag{5}
\end{equation*}
$$

which is much better than (2). Besides, equality in (5) holds for the polynomial $P(z)=\alpha z^{n}+\beta$, where $|\alpha|=|\beta|$.

In this paper, we shall first obtain a result concerning the minimum modulus of a polynomial $P(z)$ and its derivative $P^{\prime}(z)$ analogous to (2) and (1), when there is a restriction on the zeros of $P(z)$. We prove

Theorem 1. If $P(z)$ is a polynomial of degree n having all its zeros in $|z| \leqslant 1$, then

$$
\begin{equation*}
\operatorname{Min}_{|z|=1}\left|P^{\prime}(z)\right| \geqslant n \operatorname{Min}_{|z|=1}|P(z)| \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Min}_{|z|=R>1}|P(z)| \geqslant R^{n} \operatorname{Min}_{|z|=1}|P(z)| . \tag{7}
\end{equation*}
$$

Both the estimates are sharp with equality for $P(z)=m e^{i \alpha} z^{n}, m>0$.
Next we prove the following interesting generalization of (3).
Theorem 2. If $P(z)$ is a polynomial of degree n which does not vanish in the disk $|z|<1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \leqslant \frac{n}{2}\left\{\operatorname{Max}_{|z|=1}|P(z)|-\operatorname{Min}_{|=|=1}|P(z)|\right\} . \tag{8}
\end{equation*}
$$

The result is best possible and equality in (8) holds for the polynomial $P(z)=\alpha z^{n}+\beta$, where $|\beta| \geqslant|\alpha|$.

As an application of Theorem 2, we also obtain the following generalization of the inequality (5).

Theorem 3. If $P(z)$ is a polynomial of degree n which does not vanish in the disk $|z|<1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=R>1}|P(z)| \leqslant\left(\frac{R^{n}+1}{2}\right) \operatorname{Max}_{|z|=1}|P(z)|-\left(\frac{R^{n}-1}{2}\right) \operatorname{Min}_{|z|=1}|P(z)| . \tag{9}
\end{equation*}
$$

The result is best possible and equality in (9) holds for $P(z)=\alpha z^{n}+\beta$, where $|\beta| \geqslant|\alpha|$.
Finally we present a generalization of the inequality (4).

Theorem 4. If $P(z)$ is a polynomial of degree n which has all its zeros in $|z| \leqslant 1$, then

$$
\begin{equation*}
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geqslant \frac{n}{2}\left\{\underset{|z|=1}{\operatorname{Max}}|P(z)|+\operatorname{Min}_{|z|=1}|P(z)|\right\} . \tag{10}
\end{equation*}
$$

The result is best possible and equality in (10) holds for $P(z)=\alpha z^{n}+\beta$, where $|\beta| \leqslant|\alpha|$.

2. Proofs of the Theorems

Proof of Theorem 1. If $P(z)$ has a zero on $|z|=1$, then inequalities (6) and (7) are trivial. So we suppose that $P(z)$ has all its zeros in $|z|<1$. If $m=\operatorname{Min}_{|z|=1}|P(z)|$, then $m>0$ and $m \leqslant|P(z)|$ for $|z|=1$. Therefore, if α is a complex number such that $|\alpha|<1$, then it follows by Rouche's theorem that the polynomial $F(z)=P(z)-\alpha m z^{n}$ of degree n has all its zeros in $|z|<1$. By the Gauss-Lucas theorem, the polynomial

$$
F^{\prime}(z)=P^{\prime}(z)-n \alpha m z^{n-1}
$$

has all its zeros in $|z|<1$ for every complex number α with $|\alpha|<1$. This implies that

$$
n m|z|^{n-1} \leqslant\left|P^{\prime}(z)\right| \quad \text { for } \quad|z| \geqslant 1
$$

If this is not true, then there is a point $z=z_{0},\left|z_{0}\right| \geqslant 1$, such that

$$
\left|n m z_{0}^{n-1}\right|>\left|P^{\prime}\left(z_{0}\right)\right| .
$$

We can, therefore, take $\alpha=P^{\prime}\left(z_{0}\right) / n m z_{0}^{n-1}$, then $|\alpha|<1$ and $F^{\prime}\left(z_{0}\right)=0$. But this contradicts the fact that $F^{\prime}(z) \neq 0$ for $|z| \geqslant 1$. Hence

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \geqslant n m|z|^{n-1} \quad \text { for } \quad|z| \geqslant 1 \tag{11}
\end{equation*}
$$

In particular, (11) gives

$$
\operatorname{Min}_{|z|=1}\left|P^{\prime}(z)\right| \geqslant n m=n \operatorname{Min}_{|z|=1}|P(z)| .
$$

This proves inequlaity (6). To prove inequality (7), we observe that if $Q(z)=z^{n} P(1 / \bar{z})$, then $Q(z)$ has all its zeros in $|z|>1$ and $m \leqslant|P(z)|=$ $|Q(z)|$ for $|z|=1$. Therefore, the function $m / Q(z)$ is analytic in $|z| \leqslant 1$ and $|m / Q(z)| \leqslant 1$ for $|z|=1$. Hence by the maximum modulus principle it follows that $m \leqslant|Q(z)|$ for $|z| \leqslant 1$. Replacing z by $1 / \bar{z}$ and noting that
$z^{n} \overline{Q(1 / \bar{z})}=P(z)$, we conclude that $m|z|^{n} \leqslant|P(z)|$ for $|z| \geqslant 1$. Taking in particular $z=R e^{i \theta}, 0 \leqslant \theta<2 \pi, R \geqslant 1$, we get

$$
\left|P\left(R e^{i \theta}\right)\right| \geqslant m R^{n},
$$

which gives

$$
\operatorname{Min}_{|z|=R>1}|P(z)|=\operatorname{Min}_{|z|=1}|P(R z)| \geqslant R^{n} \operatorname{Min}_{|z|=1}|P(z)| .
$$

This proves the inequality (7) and Theorem 1 is completely proved.
Proof of Theorem 2. If $m=\operatorname{Min}_{|z|=1}|P(z)|$, then $m \leqslant|P(z)|$ for $|z|=1$. Since all the zeros of $P(z)$ lie in $|z| \geqslant 1$, therefore, for every complex number α such that $|\alpha|<1$, it follows (by Rouche's theorem for $m>0$) that the polynomial $F(z)=P(z)-\alpha m$ does not vanish in $|z|<1$. Thus if $z_{1}, z_{2}, \ldots, z_{n}$ are the zeros of $F(z)$, then $\left|z_{j}\right| \geqslant 1, j=1,2, \ldots, n$, and

$$
\frac{z F^{\prime}(z)}{F(z)}=\sum_{j=1}^{n} \frac{z}{z-z_{j}},
$$

so that

$$
\operatorname{Re} \frac{e^{i \theta} F^{\prime}\left(e^{i \theta}\right)}{F\left(e^{i \theta}\right)}=\sum_{j=1}^{n} \operatorname{Re} \frac{e^{i \theta}}{e^{i \theta}-z_{j}} \leqslant \sum_{j=1}^{n} \frac{1}{2}=\frac{n}{2},
$$

for points $e^{i \theta}, 0 \leqslant \theta<2 \pi$, other than the zeros of $F(z)$. This implies

$$
\left|e^{i \theta} F^{\prime}\left(e^{i \theta}\right)\right| \leqslant\left|n F\left(e^{i \theta}\right)-e^{i \theta} F^{\prime}\left(e^{i \theta}\right)\right|
$$

for every point $e^{i \theta}, 0 \leqslant \theta<2 \pi$, other than the zeros of $F(z)$. Since this inequality is trivially true for points $e^{i \theta}$ which are the zeros of $F(z)$, it follows that

$$
\begin{equation*}
\left|F^{\prime}(z)\right| \leqslant\left|n F(z)-z F^{\prime}(z)\right| \quad \text { for } \quad|z|=1 . \tag{12}
\end{equation*}
$$

If we define $Q(z)=z^{n} \overline{P(1 / \bar{z})}$ and $G(z)=z^{n} \overline{F(1 / \bar{z})}$, then we have $G(z)=$ $Q(z)-\bar{\alpha} m z^{n}$ and it can be easily seen that

$$
\left|G^{\prime}(z)\right|=\left|n F(z)-z F^{\prime}(z)\right| \quad \text { for } \quad|z|=1 .
$$

Hence from (12) we get

$$
\begin{equation*}
\left|P^{\prime}(z)\right|=\left|F^{\prime}(z)\right| \leqslant\left|G^{\prime}(z)\right|=\left|Q^{\prime}(z)-\bar{\alpha} n m z^{n-1}\right| \tag{13}
\end{equation*}
$$

for $|z|=1$ and for every α with $|\alpha|<1$. Since all the zeros of $Q(z)$ lie in $|z| \leqslant 1$, therefore, by Theorem 1, we have for $|z|=1$

$$
\left|Q^{\prime}(z)\right| \geqslant \operatorname{Min}_{|z|=1}|Q(z)|=n \operatorname{Min}_{|n|=1}|P(z)|=n m .
$$

Hence we can choose argument of α in (13) such that

$$
\left|Q^{\prime}(z)-\bar{\alpha} n m z^{n-1}\right|=\left|Q^{\prime}(z)\right|-|\alpha| n m \quad \text { fpr } \quad|z|=1 .
$$

Using this in (13) and letting $|\alpha| \rightarrow 1$, we obtain

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \leqslant\left|Q^{\prime}(z)\right|-n m \quad \text { for } \quad|z|=1 \tag{14}
\end{equation*}
$$

If $P(z)$ is a polynomial of degree n, then [1, Lemma 2]

$$
\begin{equation*}
\left|P^{\prime}(z)\right|+\left|n P(z)-z P^{\prime}(z)\right| \leqslant n \operatorname{Max}_{|z|=1}|P(z)| \quad \text { for } \quad|z|=1 \tag{15}
\end{equation*}
$$

Since

$$
\left|Q^{\prime}(z)\right|=\left|n P(z)-z P^{\prime}(z)\right| \quad \text { for } \quad|z|=1
$$

it follows from (15) that

$$
\begin{equation*}
\left|P^{\prime}(z)\right|+\left|Q^{\prime}(z)\right| \leqslant n \operatorname{Max}_{|z|=1}|P(z)| \quad \text { for } \quad|z|=1 \tag{16}
\end{equation*}
$$

Inequality (14) gives with the help of inequality (16) that

$$
\begin{aligned}
2\left|P^{\prime}(z)\right| & \leqslant\left|P^{\prime}(z)\right|+\left|Q^{\prime}(z)\right|-n m \\
& \leqslant n\left(\underset{|z|=1}{\operatorname{Max}}|P(z)|-\operatorname{Min}_{|z|=1}|P(z)|\right) \quad \text { for } \quad|z|=1,
\end{aligned}
$$

which immediately gives (8) and Theorem 2 is proved.
Proof of Theorem 3. Let $M=\operatorname{Max}_{|z|=1}|P(z)|$ and $m=\operatorname{Min}_{\mid z=1}|P(z)|$.
Since $P(z)$ is a polynomial of degree n which does not vanish in $|z|<1$, therefore, by Theorem 2 we have

$$
\left|P^{\prime}(z)\right| \leqslant(n / 2)(M-m) \quad \text { for } \quad|z|=1
$$

Now $P^{\prime}(z)$ is a polynomial of degree $n-1$; therefore, it follows by (2) that for all $r \geqslant 1$ and $0 \leqslant \theta<2 \pi$

$$
\left|P^{\prime}\left(r e^{i \theta}\right)\right| \leqslant(n / 2) r^{n-1}(M-m)
$$

Also for each $\theta, 0 \leqslant \theta<2 \pi$ and $R>1$, we have

$$
P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)=\int_{1}^{R} e^{i \theta} P^{\prime}\left(t e^{i \theta}\right) d t
$$

This gives

$$
\begin{aligned}
\left|P\left(R e^{i \theta}\right)-P\left(e^{i \theta}\right)\right| & \leqslant \int_{1}^{R}\left|P^{\prime}\left(t e^{i \theta}\right)\right| d t \\
& \leqslant \frac{(M-m)}{2} \int_{1}^{R} n t^{n-1} d t \\
& =\frac{1}{2}\left(R^{n}-1\right)(M-m),
\end{aligned}
$$

for each $\theta, 0 \leqslant \theta<2 \pi$ and $R>1$. Hence

$$
\begin{align*}
\left|P\left(R e^{i \theta}\right)\right| & \leqslant\left|P\left(e^{i \theta}\right)\right|+\frac{1}{2}\left(R^{n}-1\right)(M-m) \\
& \leqslant M+\frac{1}{2}\left(R^{n}-1\right)(M-m), \tag{17}
\end{align*}
$$

for each, $\theta, 0<\theta<2 \pi$ and $R>1$. From (17) we conclude that

$$
\operatorname{Max}_{|z|=R>1}|P(z)| \leqslant\left(\frac{R^{n}+1}{2}\right) M-\left(\frac{R^{n}-1}{2}\right) m .
$$

This proves the desired result.
Proof of Theorem 4. Let $m=\operatorname{Min}_{|z|=1}|P(z)|$, then $m \leqslant|P(z)|$ for $|z|=1$. Since all the zeros of $P(z)$ lie in $|z| \leqslant 1$, therefore, for every complex number α, such that $|\alpha|<1$, it follows (by Rouche's theorem for $m>0$) that the polynomial $F(z)=P(z)-m \alpha$ has all its zeros in $|z| \leqslant 1$. Hence if $z_{1}, z_{2}, \ldots, z_{n}$ are the zeros of $F(z)$, then $\left|z_{j}\right| \leqslant 1, j=1,2, \ldots, n$, and

$$
\operatorname{Re} \frac{e^{i \theta} F^{\prime}\left(e^{i \theta}\right)}{F\left(e^{i \theta}\right)}=\sum_{j=1}^{n} \operatorname{Re} \frac{e^{i \theta}}{e^{i \theta}-z_{j}} \geqslant \sum_{j=1}^{n} \frac{1}{2}=\frac{n}{2},
$$

for every point $e^{i \theta}, 0 \leqslant \theta<2 \pi$, which is not a zero of $F(z)$. This gives

$$
\left|F^{\prime}\left(e^{i \theta}\right) / F\left(e^{i \theta}\right)\right| \geqslant \operatorname{Re}\left(e^{i \theta} F^{\prime}\left(e^{i \theta}\right)\right) / F\left(e^{i \theta}\right) \geqslant \frac{n}{2},
$$

for every point $e^{i \theta}, 0 \leqslant \theta<2 \pi$, which is not a zero of $F(z)$. This further implies

$$
\left|F^{\prime}\left(e^{i \theta}\right)\right| \geqslant(n / 2)\left|F\left(e^{i \theta}\right)\right|
$$

for every point $e^{i \theta}, 0 \leqslant \theta<2 \pi$. Hence

$$
\left|P^{\prime}(z)\right|=\left|F^{\prime}(z)\right| \geqslant(n / 2)|F(z)|=(n / 2)|P(z)-\alpha m| \quad \text { for } \quad|z|=1
$$

and for every α, with $|\alpha|<1$. Choosing argument of α suitably and letting $|\alpha| \rightarrow 1$, we get

$$
\left|P^{\prime}(z)\right| \geqslant(n / 2)(\mid P(z)+m) \quad \text { for } \quad|z|=1
$$

which gives

$$
\operatorname{Max}_{|z|=1}\left|P^{\prime}(z)\right| \geqslant \frac{n}{2}\left(\underset{|z|=1}{\operatorname{Max}}|P(z)|+\operatorname{Min}_{|z|=1}|P(z)|\right) .
$$

This completes the proof of Theorem 4.

3. Some Remarks

Remark 1. Let $P(z)$ be a polynomial of degree n which has all its zeros in $|z| \leqslant 1$. If $Q(z)=z^{n} \overline{P(1 / \bar{z})}$, then the polynomial $Q(z)$ does not vanish in $|z|<1$ and $|P(z)|=|Q(z)|$ for $|z|=1$, so that

$$
\operatorname{Min}_{|z|=1}|Q(z)|=\operatorname{Min}_{|z|=1}|P(z)| .
$$

Applying (14) to the polynomial $Q(z)$ and noting that $z^{n} \overline{Q(1 / \bar{z})}=P(z)$, it follows that

$$
\begin{equation*}
\left|P^{\prime}(z)\right|-\left|Q^{\prime}(z)\right| \geqslant n \operatorname{Min}_{\mid=1=1}|P(z)| \quad \text { for } \quad|z|=1 \tag{18}
\end{equation*}
$$

We also note that for $|z|=1$

$$
\left|Q^{\prime}(z)\right|=\left|z P^{\prime}(z)-n P(z)\right| \geqslant\left|P^{\prime}(z)\right|-n|P(z)|
$$

and therefore,

$$
\begin{equation*}
\left|P^{\prime}(z)\right|-\left|Q^{\prime}(z)\right| \leqslant n|P(z)| \quad \text { for } \quad|z|=1 \tag{19}
\end{equation*}
$$

From (18) and (19) we obtain

$$
\begin{equation*}
\operatorname{Min}_{|z|=1}\left(\left|P^{\prime}(z)\right|-\left|Q^{\prime}(z)\right|\right)=n \operatorname{Min}_{|z|=1}|P(z)|, \tag{20}
\end{equation*}
$$

for every polynomial $P(z)$ having all its zeros in $|z| \leqslant 1$. Moreover, the minimums of both sides in (20) are attained at the same point $\left|z_{0}\right|=1$. This follows from the fact that if $\left|P\left(z_{0}\right)\right|=\operatorname{Min}_{|z|=1}|P(z)|$ and $\left|z_{0}\right|=1$, then (from (18) and (19)) we get $\left|P^{\prime}\left(z_{0}\right)\right|-\left|Q^{\prime}\left(z_{0}\right)\right|=n\left|P\left(z_{0}\right)\right|$.

Remark 2. In (7) equality holds only for $P(z)=m e^{i \alpha} z^{n}$. For if $m=\operatorname{Min}_{1=1-1}|P(z)|$ and $P(z)$ does not have the form $m e^{i x} z^{n}$, then $Q(z)=z^{n} \overline{P(1 / \bar{z})}$ is not a constant. From the proof of the inequality (7), it follows that $m<|Q(z)|$ for $|z|<1$ and therefore, $m|z|^{n}<|P(z)|$ for $|z|>1$. This implies $\operatorname{Min}_{|z|=R>1}|P(z)|>m R^{n}=R^{n} \operatorname{Min}_{|z|=1}|P(z)|$. If $P(z)=m e^{i z} z^{n}$, then we have clearly equality in (7).

Remark 3. If in Theorem 3, $M=\operatorname{Max}_{|z|-1}|P(z)|$ and $m=$ $\operatorname{Min}_{1 z \mid=1}|P(z)|$, then equality in (9) holds only for $P(z)=(\alpha(M-m) / 2)$ $z^{n}+(\beta(M+m) / 2)$, where $|\alpha|=|\beta|=1$. This follows from the fact that if $P(z)$ does not have the form $(\alpha(M-m) / 2) z^{n}+(\beta(M+m) / 2),|\alpha|=|\beta|=1$, then in the proof of Theorem 3, by virtue of (2), we have the strict inequality

$$
\left|P^{\prime}\left(r e^{i \theta}\right)\right|<(n / 2) r^{n-1}(M-m), \quad \text { for all } r>1 \text { and } 0 \leqslant \theta<2 \pi
$$

Hence we also have the strict inequality in (17) for all $R>1$ and $0 \leqslant \theta<2 \pi$, which gives

$$
\operatorname{Max}_{\mid=1=R>1}|P(z)|<\left(\frac{R^{n}+1}{2}\right) M-\left(\frac{R^{n}-1}{2}\right) m
$$

Finally, if $P(z)=(\alpha(M-m) / 2) z^{n}+(\beta(M+m) / 2), \quad|\alpha|=|\beta|=1$, then $\operatorname{Max}_{\mid=1=R>1}|P(z)|=\left(\left(R^{n}+1\right) / 2\right) M-\left(\left(R^{n}-1\right) / 2\right) m$.

Acknowledgment

We thank Professor Vilmos Totik for his useful suggestions.

References

1. A. Aziz and Q. G. Mohammad, Simple proof of a theorem of Erdös and Lax, Proc. Amer. Math. Soc. 80 (1980), 119-122.
2. N. C. Ankeny and T. J. Rivlin, On a theorem of S. Bernstein, Pacific J. Math. 5 (1953), 849-852.
3. P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
4. G. Pólya and G. Szegö, "Aufgaben und Lehrsätze aus der Analysis," Springer-Verlag. Berlin, 1925.
5. M. Riesz, Über einen Satz des Herrn Serge Bernstein, Acta Math. 40 (1916), $337-347$.
6. A. C. Schaffrer, Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc. 47 (1941), 565-579.
7. P. Turán, Ubber die ableitung von polynomen, Compasitio Math. 7 (1939), $89-95$.
